Assignment统计学代写-statistics代写-STAT 4000/5000代写
Assignment统计学代写

Assignment统计学代写-statistics代写-STAT 4000/5000代写

APPM 4570/5570

Homework #3

STAT 4000/5000

Assignment统计学代写 Where the cdf of Z can be calculated in R with pnorm( 0.7) and pnorm(3.5) or by simply using the standard normal table.

Problem 1

Note that for the system to work, all of the following have to be satisfied:

Component 1 has to work

Atleast one of the components 2, 3, and 4 has to work.

Atleast one of the components 5 and 6 has to work.

Component 1 has an exponentially distributed lifetime with a mean of 1/2 year. Components 2, 3, and 4 each have an exponentially distributed lifetime with mean lifetime of 1 year. Components 5 and 6 have exponentially distributed lifetimes with mean lifetime of 1.5 year.

Let Xi = the lifetime of component i.      Assignment统计学代写

Then, because λ = 1:

X1 Exp(1/0.5) = Exp(2)

fX1 (x) = 2e2x

FX1 (x) = 1 e2x

X2, X3, X4 Exp(1/1) = Exp(1)

fX (x) = ex

FX (x) = 1 ex , for i=2,3,4

X5, X6 Exp(1/1.5) = Exp(2/3)

fX (x) = (2/3)e2x/3

FX (x) = 1  e2x/3 , for i = 5, 6

• a. What is the probability that the system will function uninterruptedly for at least 2 years?

P (F unction at least two years) = P (X1  2)  P (X2   X3   X4  2)  P (X5   X6  2)

P (X1 2) = 1 P (X1 < 2) = 1 FX1 (2) = 1 (1 e2(2)) = e4

P (X2   X3   X4  2) = 1  P (X2 <  X3 <  X4 < 2) i.=i.d. 1  (P (X2< 2)3

= 1 (FX2 (2))3 = 1 (1 e(2))3 = 1 (1 e2)3

P (X5   X6  2) = 1  P (X5 <  X6 < 2) i.=i.d. 1  (P (X5 < 2))2 =

 (F  (1  e2(2)/3)2

1  (1  e4/3)2

P (F unction at least two years) = (e4 (1  (1  e2)3)  (1  (1  e4/3)2) = 0.00296

• b. What is the probability that the system will fail in the ftrst 3 months of the 2nd year.

We want the probability that the system works for 1 year but fails before 1.25 years Which we can write as:

P(system functions more than 1 year)-P(system functions more than 1.25 years)

P (X1 1) P (X2 1 X3 1 X4 1) P (X5 1 X6 1)

P (X1 1.25) P (X2 1.25 X3 1.25 X4 1.25) P (X5 1.25 X6 1.25)      Assignment统计学代写

Using techniques from part (a),

= (1 P (X1) < 1) (1 P (X2 < 1)3) (1 P (X5 < 1)2)

(1 P (X1 < (1.25)) (1 P (X2 < 1.25)3) (1 P (X5 < 1.25)2)

= [(1  FX1 (1))  (1  FX2 (1)3)  (1  FX5 (1)2)]  [(1  FX1 (1.25))  (1  FX2 (1.25)3)  (1  FX5 (1.25)2)]

= [(e2(1) (1  (1  e(1))3)  (1  (1  e2(1)/3)2)]

[(e2(1.25) (1  (1  e(1.25))3)  (1  (1  e2(1.25)/3)2)] = 0.0416

Problem 2    Assignment统计学代写

Let X be a normally distributed random variable with mean 3 and variance 4.

• a. Let Y = 5X+2. What is the distribution of Y? What are its mean and variance?

Y is normal as it is a linear function of a normal random variable, with mean:

µy = E(Y ) = E(5X + 2) = E(5X) + E(2) = 5E(X) + 2 = 5 (3) + 2 = 17

and variance:

σ2 = V ar(Y ) = V ar(5X + 2) = V ar(5X) + V ar(2) = 52V ar(X) + 0 = 25 (4) + 0 = 100

Thus, Y N ormal(17, 100)

• b. Find P(Y<10). Find P(X<10).

Using the standard normal transformation:    Assignment统计学代写

P (Y  < 10) = P (Z < (10  µy)y) = P (Z < (10  17)/10) = P (Z < 0.7) = Φ(0.7) = 0.242

P (X < 10) = P (Z < (10  µx)x) = P (Z < (10  3)/2) = P (Z < 3.5) = Φ(3.5) = 0.9998

Where the cdf of Z can be calculated in R with pnorm( 0.7) and pnorm(3.5) or by simply using the standard normal table.

• c. What is the 99th percentile of the distribution of Y?

Find y such that P (Y < y) = 0.99

Using R, z such that P (Z < z) = 0.99 is found by z qnorm(0.99) = 2.326 And, z = (y  µy)y

So, y = z ∗ σy + µy = (2.326) (10) + (17) = 40.26

• d. What is the 99th percentile of the distribution of X?

Similarly, still dealing with the 99th percentile, i.e. z = 2.326    Assignment统计学代写

x = z ∗ σx + µx = (2.326) (2) + (3) = 7.65

• e. What is the distribution of W = exp(Y)? What are its mean and variance?

W = exp(Y ) is log-normal because log(W ) = Y is normally distributed. Thus,

µW  E(W ) = exp{µy σ2/2} exp{17 + 100/2} exp{67} e67 = 1.252  1029

σ2 = V ar(W ) = exp{2µy +σ2}∗(exp{σ2}−1) = exp{2(17)+(100)}∗(exp{(100)}−1) = e134 (e100 1)

4.22  10

W LogN ormal(17, 100) 

Assignment统计学代写
Assignment统计学代写

Problem 3    Assignment统计学代写

Let X1, X2, X3, X4, X5 and X6 denote the numbers of blue, brown, green, orange, red, and yellow M&M candies, respectively, in a sample of size n. According to the M&M Web site, the color proportions are p1=0.24, p2=0.13, p3=0.16, p4 = 0.20, p5 =0.13, and p6 =0.14.

• a. If n = 12, what is the probability that there are exactly two M&Ms of each color?

Use multinomial distribution:

P (X1 = 2, X2 = 2, …, X6 = 2) =  12! (0.242)(0.132)(0.162)(0.202)(0.132)(0.142) = 0.00247

• b. For n = 20, what is the probability that there are at most ftve orange candies? (Hint: Treat an orange candy as a success and any other color as a failure)

Let X= number of orange selected

From the hint, consider a binomial distribution with p = p4 = 0.2    Assignment统计学代写

i.e. X Bin(20, 0.2)

Then, P (X  5) = Σ5 .20Σ(p)x(1  p)20x  = Σ5 .20Σ(0.2)x(0.8)20x  0.804

• c.  In a sample of 20 M&Ms, what is the probability that the total number of candies    that are blue, green, or orange is at least 10?

Let X= number of blue, green, or orange selected

Now consider a binomial distribution with p = p1 + p3 + p4 = 0.6

i.e. X Bin(20, 0.6)

This can be done in R with the following code: 1 pbinom(9, 20, 0.6) = 0.8724788

This can also be calculated as a multinomial distribution using the following code in R:


p1=0

for (i in 0:9) {

for (j in 0:(9-i)) {

for (k in 0:(9-j-i)) {

for (l in (20-i-j-k):(20-i-j-k)) {

p1 = c(p1,dmultinom(x=c(i,j,k,l),prob=c(.24,.16,.2,.4)))

}}}}

Answer=1-p1= 0.8724788

Problem 4

Please answer and provide a brief justification of your answer:

• a. Can covariance between two random variables be less than -1?

Yes, covariance between two random variables can be much less than -1, as covariance is not normalized, however correlation cannot be less than -1, as it is normalized.

• b. If covariance between two random variables is negative, does their correlation have to be negative?

Yes, if covariance is negative, correlation has to be negative. This is because and σx, σy 0, so covariance and correlation must have the same sign.

• c. If correlation between two random variables is negative, does their covariance have to be negative?

Yes, if correlation between two random variables is negative, their covariance must be negative.

Cov(X, Y ) = ρx,y σx σy so the covariance must have the same sign as the correlation.

• d. Can correlation between two random variables be bigger than 1?

No, 1 ρx,y 1. The magnitude of correlation cannot exceed 1.       Assignment统计学代写

• e. If Cov(X,Y)= 0.3, what is Cov(100X,Y)?

Cov(100X, Y ) = 100 Cov(X, Y ) = 100 (0.3) = 30

• f. If Corr(X,Y) = 0.1, what is Cov(100X,Y)?

Cov(100X, Y ) = Corr(100X, Y  σ100X  σY sgn(100  1)  Corr(X, Y  100σX  σY = 1  0. 100σX  σY = 10σXσY

• g. What is Cov(X,X)?

Cov(X, X) = E(XX) E(X)E(X) = E(X2) (E(X))2 = V ar(X)

• h. What is Corr(X,X)?

• k. What is Cov(100X,10X)?

Cov(100X, 10X) = 100 10 Cov(X, X) = 1000 V ar(X)

• l. What is Corr(100X,10X)?

Corr(100X, 10X) = sgn(100 10) Corr(X, X) = 1 1 = 1

Problem 5    Assignment统计学代写

A rock specimen is randomly selected and weighed two different times. Let w denote the true weight (a number) of the rock, and let X1 and X2 be the two measured weights. Then, X1 = w + E1, and X2 = w + E2, where E1 and E2 are the two measurement errors. Suppose that E1 and E2 are independent, and distributed normally with mean 0 and variance equal to 0.1 (ie, E1, E2  N (0, 0.1)).

• a. What is the mean of X1? What is the mean of X2?

µX1  = E(X1) = E(w E1) = E(w) + E(E1) = w + 0 = w

µX2  = E(X2) = E(w E2) = E(w) + E(E2) = w + 0 = w

• b. What is Var(X1)? What is Var(X2)?

V ar(X1) = V ar(w E1) = V ar(w) + V ar(E1) = 0 + 0.1 = 0.1

V ar(X2) = V ar(w E2) = V ar(w) + V ar(E2) = 0 + 0.1 = 0.1

• c. What is Corr(X1,X2)?

 

更多代写:AI代写 Gmat代考 英国网课作业代写范例 Critical Review Essay代写 biotechnology论文代写 网课托管平台价格

合作平台:天才代写 幽灵代  写手招聘  paper代写

Assignment统计学代写
Assignment统计学代写

发表回复